mississippi

The River

- 3800 km in length
- Over 100 major tributaries
- DB covers more than ½ of USA
- Flood plain is 200km at it's widest point
- Massively important for economic reasons
- Huge variation between Upper, Middle and Lower courses makes management very difficult
 - -Steep upper courses subject to erosion
 - -Meandering middle/ lower course, susceptible to flooding

Flood Causes

Wide flood plain

Middle Course

Excessive rainfall in Appalachians

Meanders vulnerable to flooding

Excessive meanders, low V

Snowmelt Jan-May from Appalachians

Upper Course

Vulnerable to erosion

Processes

- 1. Missouri/ Mississippi tribs
 - -Steep, high V
 - -Lots of MM
 - -Low S.Load, mostly bedload
- 2. Arkansas tribs
 - -Mostly dry then lots of rain
 - -Temperate grassland replaced by arable crops
 - -Excessive sheetwash during heavy rain
 - -Rills & gullies
 - -Variable S.Load
- 3. Ohio/ Tennessee tribs
 - -Heavy rain, cyclonic + orographic
 - -Erosion exacerbated by deforestation & poor farming techniques
 - -High S.Load
 - –Deep gulleying

Management

- 1. M&M: No major strategies necessary, little erosion Dams downstream prevent sediment causing isssues downstream
- 2. Ark: Adaption of farming techniques to semi-arid climate e.g less arable, more pastoral
- Stabilisation with more permanent grassland and brushwooding gullies
- 3. Ohio & Ten: 1930: Tennessee Valley Authority (TVA) established. Soil erosion reduced by:
 - -Afforestation
 - -Fertilisers
 - -Contour ploughing
 - -Cover crpops
 - -Diversification
 - -Scientific Agr. Education

1993 floods

- Levees burst
- 43 deaths
- 50 000 evacuees
- 26 000 km² flooded
- \$12 billion damages

-Dynamic delta, would constantly change if not managed

- It is the most heavily managed river in the world
- And it's management is the responsibility of the US Army Engineering Corps (USAEC)

Management

Construction of levees

-Prevents overtopping but also prevents water re-entering channel after a flood

-And sediment no longer deposited on flood plain, instead in river channel, lowering Q

Dams & Resevoirs

Channelisation

- -But river fights, gradient steepened and speed downstream is increased
- -Cuts length by 150 miles

Afforestation

Wing dykes increase scour at tips

Ohio Arkansaw

The Pressures

Social: The flood plain is important for housing.

Large cities such as St. Louis and New Orleans necessistated stabilisation of the meanders and flood prevention

Economic: The middle courses play host to huge maize and cotton crops, huge industry

The Mississippi must be navigable to facilitate economic growth Delta has it's own industries of oil/gaas, fishing and tourism

Environmental: Extensive afforestation required, as well as reinstating of grasslands More ecocentric tech needded (see

below)

Lower Course Dynamic Delta Deposition

Formation

Due to excessive sediment load into shallow Gulf of Mexico 7 major deltas in the last 9000 years

River used to flood naturally, allowing growth of delta

Change of sediment in channels led to deviation of delta

Management

Flood controls upstream have reduced sediment load Levees have prevented annual flood

Channelisation has increased V at mouth, so delta is elongated Lower peak O leads to salinisation

Delta is very useful for oil/gas, seafood, farming, and all are under threat as the delta is constantly trying to change

Controversy

- The USAEC changed the cross section of the river, almost definitely affecting it's bankfull Q
- Ambiguity about past flood measurements. Flood levels appear to be rising
- If the levees hadn't burst St. Louis would have been destroyed
- Levees exacerbated the flood levels, and had been built only for a 100 year recurrence interval