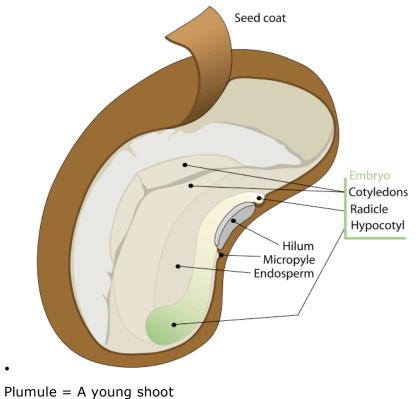
Topic 415/4/09 14:12

The fact that plants can't move means that they must be excellent adaptors, and makes them useful records of climate change

Plant structure

- Strong walls made from sugar polymers
- Specialised tubes run vertically
- Cells stiffened with **lignin**
 - Lignification occurs one year
 - Forming a strong and flexible polymer
- Specialised componentry
 - \circ Chloroplasts
 - Rigid cell walls
 - Vacuole
 - Which controls the flaccidity / turgidity of the cell, and affects the rigidity of the plant
- Types of plant fibre
 - o Parenchyma
 - Packing fibre
 - o Cellulose
 - Made from B-Glucose molecules
 - Broken by hydrolysis
 - Unbranched
 - Solely 1,4 glycosidic bonds
 - Versus starch
 - Which is alpha-Glucose, branched with 1,6 & 1,4 links
 - o Microfibrils
 - Hydrogen bonds between cellulose chains form microfibrils
 - Make up the cell wall
 - Microfibrils are bound helically and held together by amylopectin and hemicellulose glue
 - Multiple angles creates toughness
 - o Plasmodesmate
 - Fluid filled channels which link cytoplasms, often found in pits in the cell wall, where there is a lack of cellulose
 - o Xylem
 - Stiffened cell walls provide rigidity

- Often dead
- Become increasingly lignified, and the tonoplasts, which separate the cells, break down to allow flow
- o Phloem
 - The `nutrient sieve'
- Schlerenchyma is the fibrous outer layer of a plant's stem
 - Columns of which help provide support
- Mass transport
 - Why is water brill?
 - Good solvent; the `universal solvent'
 - High heat capacity, so useful for stabilising temperatures
- Transport
 - Cohesion between like molecules
 - Adhesion between different ones
 - Water and wall
 - Provides a 'mass flow' system
- Ions
 - Magnesium ions
 - Lack = No chlorophyll, yellow leaves
 - Calcium ions
 - Lack = stunted growth
 - o Nitrate ions
 - Lack= stunted growth
 - Needed for nitrogenous bases
- Stems are kept rigid by turgid cells + parenchyma


Human use of plants

- Fibres
 - \circ ~ We use retting to separate the plant fibres from one another
 - This allows us to remove the lignin
- Natural antibiotics
 - For instance garlic
- Foxgloves & Digitalis
 - To treat dropsy, caused by oedemas
 - \circ $\;$ Digitalis is a diuretic, causing all the excess fluid to be weed out!
 - Withering kept upping the dose until somebody died

- \circ $\,$ Worked out that the efficacy of the digitalis was proportional to urine output
- Side effects were nausea & vomiting. When these were exhibited he dropped the dose again
- Drug testing today
 - Preclinical tirals
 - Animal and labs
 - Clinical Phase 1
 - Small group of healthy volunteers
 - Mainly to assess how the body absorbs and processes the drug
 - o Clinical Phase 2
 - Small group (100-300) of disease sufferes
 - Clinical Phase 3
 - Double blind procedure
 - 1000-3000 sufferers tested

Seeds

- Tough outer coat called **testa**
- Protects seeds
- Dormancy terminated in response to
 - o Chilling
 - Gut activity
 - \circ Heat
 - Abrasion
 - o Light
- Anatomy of a seed

Plumule = A young shoot Cotyledons = Side leaves Endosperm= External food supply, separate from the embryo)

Seed dispersal

- Wind
 - E.g. sycamore seeds, spinny!
- Water
 - \circ $\,$ E.g. Coconut seeds, which float
- Animal
 - E.g fruit trees
- Self propagating
 - \circ E.g. peas, which explode!

Germination

- Seeds absorb water through micropyle
- Swelling, rupturing the testa
- The enzymes AMYLASE and MALTASE convert starch into sugar
- This sugar is utilised by the plumule for growth

Uses of starch

- Expanded foam
 - E.g. For packaging
- Thickening agent
 - E.g. Wallpaper glue
- Stiffening fabrics
 - Shirt collars
- Super absorbents
 - o Tampons
- Soap

Selective breeding of plants

- Mate the best plants with the best plants, or self-pollinate the best plants
- You sometimes get inbreeding depression
- But F2 hybrids (breeding two inbred plants)
- Gives hybrid vigour

GM crops

- Insertion by
 - Viral vector
 - Bacterium (DNA in a plasmid)
 - Gold plated bullets from a gene gun
- Development
 - Herbicide resistant marker genes allow the calluses to be nurtured in herbicide rich environments, killing plants which have failed to have the gene incorporated into their genome
 - Then use **micropropagation** to grow your lovely GM plants
- Uses
 - Tougher tomatores (delayed ripening)
 - Herbicide resistant crops
 - Pest resistant crops
 - E.g Corn boring weevils thwarted by toxin producing corn
 - METABOLIC ENGINEERING
 - This is the alteration of the expression of various genes, changing whole metabolic pathways
 - E.g. Ligning removal

- Concerns
 - Antibiotic resistance could spread to weeds
 - The new genes could produce unexpected, harmful products
 - Increased herbicide use is bad for the environment
 - E.g. DDT build up killed loads of kestrels

CLIMATE CHANGE

The effects of temperature change

- Migration patterns chaning
- Alien species alter the community
- Faster photosynthesis leads to faster growth
- Life cycles messed up
 - Spawning, hatching, sex determination in reptiles
- Plants may start flowering at different times, causing pollination problems
- Photoperiod means day length
 - Some animals judge by temp, others by photoperiod, which could cause dichotomies, most damagingly between predator and prey
- Monitoring:
 - PHENOLOGY
 - The study of natural indicators of season
 - Such as hatching times, migration periods, etc.
 - Dendrochronology
 - The study of tree rings
 - Examined on a skeleton plot
 - Tall spikes indicate bad seasons
 - Ring width
 - Bigger rings in spring
 - The 'early growth' wood, growth spurt after winter dormancy
 - Smaller rings in summer
 - The 'late growth' wood, more dense and slower grown
 - Pollen sampling
 - Made possible by the plentifulness and enduringness of pollen

- Tested by carbon-14 dating
 - Comparing ratio of C14: C12; since C14 decays into C12, the more C14, the older it is.
- Allows us to assess which plants were alive when
- Giving data on succession
- Peat beetles
 - Insects react faster to climate change due to their short life cycles
 - So the exoskeletons of peat beetles can be useful indicators of climate change (bigger beetles usually mean warmer period?)
- Extrapolation
 - This is what we do to predict future climate
 - Weaknesses
 - Relies upon the continuance of current trends
 - There are lots of factors, making it difficult
 - We don't really understand how various factors interact
 - The computing power is often inadequate
- CO₂
 - Comes from:
 - Volcanoes
 - Combustion
 - Emitted by decomposition of limestone (calcium carbonate)
 - Worsened by acid rain
 - CO₂ is bound up in exoskeletons in the sea