Topic 3

Zygotes

- Ova
 - Structure
 - Follice cells outside
 - Zona Pellucida inside them
 - \circ $\;$ Releases hormones, attracting sperm and triggering lysosome reaction $\;$
 - Acrosome swells and fuses with ovum
 - Penetrating Z.P
 - Z.P thickens to prevent other sperm entering

Sperm	Ovum
Acrosome	No acrosome
Tail	No tail
Mitochondria	Mitochondria
No lipids	Lipid stores
ATP store	No ATP store
Haploid nucleus	Haploid nucleus

0

• Sperm

- Lysosome
 - Digestive enzyme triggered by Z.P hormones

• Causes 'jelly-like' ovum coating to thicken, denying entry to other sperm

Newly fertilised egg = ZYGOTE

Mitosis

Produces 2 ('to') diploid cells

- Interphase
 - Organelles & DNA replicate
 - No Interphase in zygote
 - Appearance

- Nondescript, no obvious chromosomes
- Dark patches = nucleoli containing ribsomes
- DNA is unravelled for replication
- **P**rophase
 - Chromatids thicken
 - Spindle forms, centrioles acting as anchors
 - Centromeres join chromatids
 - Nuclear Envelope disintegrates
- Metaphase
 - Centromeres attach at equator
- Anaphase
 - Centromeres split
 - Spindle shortens
 - $_{\odot}$ Spindle breaks down when chromatids reach poles
- Telophase
 - Reverse prophase
 - Chromatids lengthen
 - Nuclear envelop reforms

Cytoplasmic Division

- Protein filaments & microfibrils condense cell at neck, pinching cytoplasm apart
- In plants, ribosomes build a **new cell plate** between the two cells

Mitosis

- Ensures genetic stability
 - \circ $\;$ Every cell has the same DNA in a body $\;$
 - Growth and repair
 - Asexual reproduction
 - Binary fission in bacteria

meiosis

- Produces 4 haploid cells
- Promotes genetic variation through random assortment

Stem Cells

- Totipotent
 - <8 cells in embryo

- Pluripotent
 - <50 cells in embryo, BLASTOCYST
- Multipotent
 - E.g Bone marrow; can form multiple nerve cells
- Uses
 - o Tissue Typing
 - 20 tissue lines would provide for 90% of the pop
 - Immunosuppressants
 - Suppress immune system
 - Therapeutic cloning
 - Diploid nucleus from adult into embryo
 - Therefore forming a blastocyst which matches the patient
 - Ethics

For	Against
To alleviate human suffering	Pandora's box; slippery slope
Ovums from IVF wasted	Other cells viable
Could improve understanding	Embryo = person
Embryonic cells most versatile	Odd side effects?
Save children with congenital	Pressure to superovulate
diseases	

Promoter region

- The location for RNA polymerase to bind on a gene
- If blocked or absent, expression won't take place.

FOP

• Caused by misproduction of BMP-4 hormone which stimulates bone growth in monoctyes. If a repressor is missing, bone grows everywhere.

•

Homeobox genes

• Master genes which control differentiation of organs and orchestrate development

Melanin stuff

- Tyrosinase synthesizes melanin
- When stimulated by Melanoctye Stimulating Hormone (MSH)
 - MSH receptors increases in UV light
- Melanin produced in melanoctyes, then put → melanosomes, which gather around nucleus to protect it

Cancer

- Inherited
 - \circ $\,$ Comes from lack of repairing genes for DNA $\,$
 - Breast cancer
 - Looking for specific, hereditary mutations
 - Preventative surgery may be possible
- Mutagens
 - Asbestos
 - o Tar
 - UV light
- Viral
 - \circ $\;$ Viral infections can trigger cancer, possibly due to transfer of oncogenes
- Free radicals
 - Cause mutation by oxidising stuff
 - Combated by free radicals
- Humane Genome project
 - o 30 → 40 000 genes
 - 50%= Junk DNA
 - Shows evolution
 - o Uses
 - Identification of new genes and identifying threats
 - Identifying new drug targets
 - Personalised drugs
 - Understanding basic biology better
 - Showing and understanding evolutionary progress
 - \circ Issues
 - Insurance
 - Who should use them; better not to know?
 - Obligatory?
 - Should it determine eligibility for treatment?

Egenics

Screening

- Can combat diseases such as Duchenne muscular dystrophy
 - Which is sex linked

Germ line therapy

• Inserting desired genes into germ cells i.e. zygotes

Protein Trafficking

- 1. DNA -mRNA, mRNA moves out
- 2. mRNA attaches to ribosome
- 3. Proteins made on rbosomes, enter RER
- 4. Protein assumes end shape and is packaged as it moves through ribosomes
- 5. Vesicle is pinched off
- 6. Enters Golgi apparatus
- 7. Proteins modified to fulfull final function
- 8. Final vesicles are pinched off, containing final protein
- 9. Exit cell by exocytosis

Acetabularia

- 2 strains, different hats
- Nucleus and stem separated, hybiridzed
- Stem in the short term determines hat
- If hat chopped off, new, regrown hat matches nucleus

Cloning

- Dangerous; oversized babies
- Develop diseases such as arthritis quickly

Gene Expression

- Attaching a methyl (-CH₃) group to a gene deactivates it
- Gene expression requires **RNA polymerase & suitable transcription factors** to attach to the **promoter region on the DNA**.
 - Transcription factors
 - Some always present

- Some specially synthesized
- Some only activated by hormones (growth factors etc)
- Expression can be prevented by protein repressor molecule
 - Which prevents transcription factor binding by blocking the promotor region
 - E.G. in B-Galactosidase in E.Coli, lactose inhibits the repressor molecule, allowing the transcription of lactose digesting enzyme (B-Galactosidase)
- Signalling
 - Direct
 - Signal protein passes into nucleus, acts as transctiption factor
 - Indrect
 - Signal protein binds to receptor, causing messenger molecule to be released in cell, which acts as transcription factor

Nature Vs. Nurture

- Height
 - Nat + Nur
 - Taller men more attractive/ reproductive
 - More protein in diets, less inbreeding, better medicine, less child labour, better heating & housing
 - All lead to increasing height
- Cancer
 - When cell multiplication > apoptosis
 - DNA damaged through mutagens (UV light, asbestos, tar) or incorrect gamete formation
 - Oncogenes
 - Code for stimulating proteins in the cell cycle, perpetuating it
 - Too many = Cancer
 - Tumour Suppressant Genes TSG)
 - Produce cycle stopping proteins.
 - If inhibited, \rightarrow cancer

- At checkpoints in the cell-cyle (perpetuated by clin & cyclin dependent kinases)
- \circ $\;$ Chemicals are released to continue the cycle
- The build up of CDK catalyses phosphorylation of other proteins, making them active
- \circ Cancer

Natural	Inherited
Chemical: tar in bronchi causes	About 5% is inherited
mutation in epithelial cells	
Physical: UV light, moles \rightarrow	Lack of DNA repairing proteins, or
Tumours	odd ratios of onco/TSG
Diet: Free radicals	Mutations accumulate in the sperm
	of older men

0

- Metastasis
 - The spread of cancer
 - •